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APPLICATION OF THE PARAMETER-EXPANSION
METHOD TO CALCULATION OF TWO-PHASE
FLOWS IN CHANNELS WITH INJECTION

K. N. Volkov UDC 532.529:536.24

Velocity and concentration distributions of the condensed phase have been obtained based on the parameter-
expansion method. The characteristics of two-phase flows in channels with strong and weak injections have
been investigated. The factors exerting an influence on the velocity of nonequilibrium phase motion have been
determined; the range of applicability of the solution obtained has been established and its qualitative behav-
ior has been elucidated; the possibility of applying such a solution to calculation of the concentration of the
condensed phase has been shown.

Introduction. Metal additions in the form of a highly dispersed powder (mainly aluminum) that enter into the
composition of numerous types of modern mixture solid propellants are intended to ensure the required level of energy
characteristics and the damping of uncontrolled acoustic oscillations of the working-medium parameters in combustion
chambers.

The model of flow of products of solid-propellant disintegration is flow in a channel with a distributed injec-
tion, which reflects the most substantial aspect of the process, i.e., the supply of mass from the burning-charge surface.
The injection models the burning of the interior channel surface (strong injection) or its thermal destruction (weak in-
jection). The processes associated with the warmup of the propellant and with the disintegration of its components and
their chemical reaction occur in a thin surface layer and are disregarded in this model.

In the literature [1–5], much attention is given to the modeling of flows in channels with permeable walls, in-
cluding the cases where turbulence and the reverse influence of the condensed phase are allowed for. Both the inter-
penetrating-continuum model [4] and the discrete-trajectory method of test particles [5] are used for description of
impurity motion. Many works seek to investigate the stability of flows in channels with permeable walls [6–9].

Modeling of flows in channels with injection calls for modern computing aids in most cases. However, under
certain constraints imposed on the particle size and the geometry of the computational domain, one is able to construct
exact or approximate solutions convenient for performing evaluations and checking numerical calculations. Evaluation
of the range of applicability of such solutions calls for additional investigations in each specific case.

In this work, we consider problems associated with the modeling of two-phase flows in channels with a dis-
tributed injection based on the parameter-expansion method. The approach proposed enables us to obtain the distribu-
tion of the condensed-phase parameters accurate to the terms linear with respect to the Stokes number. We single out
the factors exerting an influence on the velocity of nonequilibrium phase motion and investigate the range of applica-
bility of the solution obtained. The velocity and concentration distributions of the condensed phase in channels with a
strong (nonviscous approximation) and weak (creeping flow) injection are given in finite form. We show the possibil-
ity of applying such a solution to calculation of the concentration of the condensed phase.

Basic Equations. Let us consider quasideveloped flow of a viscous incompressible fluid in an infinite plane
slot of half-width h from both walls of which the fluid is injected at a rate vw (Fig. 1). We bring the x axis of the
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Cartesian coordinate system into coincidence with the plane of symmetry of the channel. We take the spreading of the
fluid to be symmetric about the plane x = 0.

The condition of quasidevelopment of flow means that the flow characteristics referred to the maximum ve-
locity in the cross section change with channel length only slightly [2]:

h

um
 




dum

dx



 << 1 .

Such a flow is always established in fairly long channels behind the region of the inlet portion in injection.
Particles represent undeformable spheres of the same diameter; their collisions and reverse influence on the

gas are disregarded. Just the hydrodynamic-resistance force is allowed for in the model of interaction of a particle with
the carrier flow. The coefficient of resistance of the particle is found from the Stokes law.

We select the channel half-width h as the characteristic scale for variables with the dimensions of length and
the injection rate vw for variables with the dimensions of velocity. The continuity and momentum equations for the gas
and dispersed phases have the following form:

∂vgk

∂xk
 = 0 , (1)

ρgvgk 
∂vgi

∂xk
 = − 

∂p
∂xi

 + µ 
∂2

vgi

∂xkxk
 , (2)

∂ρpvpk

∂xk
 = 0 , (3)

ρpvpk 
∂vpi

∂xk
 = 

1

Stk
 (vgi − vpi) . (4)

Summation is made with respect to the double subscripts. The characteristic parameters of the problem are the
Reynolds and Stokes numbers:

Re = 
ρg

o
vwh

µ
 ,   Stk = 

2
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rp

h





2
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o

ρg
o
 Re .

First we solve Eqs. (1) and (2) describing the distributions of the parameters of the carrier flow; thereafter we find the
concentration and velocity distributions of the dispersed phase by integration of Eqs. (3) and (4).

Fig. 1. Diagram of flow in a channel with injection.
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Transformation of the Equations. Let us assume that the longitudinal component of the velocity of the gas
phase changes linearly along the coordinate x and the transverse component is dependent just on the coordinate y:

ug = xf (y) ,   vg = g (y) . (5)

Using (5) and eliminating pressure from the momentum equations in the projections onto the x and y axes with the
operation of cross differentiation, we obtain the equation

g
(4)

 − Re (gg′′′ − g′g′′) = 0 . (6)

Boundary conditions for Eq. (6) are set on the plane of symmetry and the channel wall: g(0) = 0, g′(0) = 0, g(1) =
−1, and g′(1) = 0. The functions f and g are related by the continuity equation (f = −g′). When Re → 0 (weak injec-
tion) and Re → ∞ (strong injection), Eq. (6) has the exact solutions [1, 2]:

Re → 0     f = 
3
2

 x (1 − y
2) ,   g = − 

1
2

 y (3 − y
2) ; (7)

Re → ∞     f = 
π
2

 cos 




π
2

 y



 ,   g = − 

1
y

 sin 




π
2

 y



 . (8)

The solution (8) fairly well describes the velocity distribution for R > 80, including the turbulent regime [1–3]. For the
dispersed phase, we assume, analogously to (5), that

up = xϕ (y) ,   vp = ψ (y) . (9)

The concentration of the condensed phase is either calculated based on the assumption of the similarity of the distri-
bution along the longitudinal coordinate

ρp = χ (y) , (10)

or is found in complete form:

ρp = ρp (x, y) . (11)

With account for (9), the momentum equations for the condensed phase will take the form

ψϕ′ + ϕ2
 − 

1
Stk

 (f − ϕ) = 0 , (12)

ψψ′ − 
1

Stk
 (g − ψ) = 0 . (13)

Boundary conditions are set on the channel wall: ϕ(1) = 0 and ψ(1) = −ω.
Qualitative Behavior of the Solution. The velocity of the dispersed phase on the plane of symmetry of the

channel is equal to zero. Otherwise there would be a point y1 ≠ 0 at which we would have ψ(y1) = 0. However, at the
point y = y1, as is easily shown, the right-hand side of Eq. (13) does not satisfy the Lipschitz condition.

Restricting ourselves to the expansion terms of first order of smallness, in the vicinity of the channel’s plane
of symmetry we may write

g (y) = g′ (0) y + o (y) ,   ψ (y) = ψ1y + o (y) ;

after the substitution into (13) we obtain the quadratic equation
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Stk ψ1
2
 + ψ1 + g′ (0) = 0 .

When 4Stk g′(0) ≤ 1 the above equation has two real roots:

ψ1 = 
− 1 % √1 − 4Stk g′ (0)

2Stk
 ,

here ψ1 = −g′(0) for Stk → 0. When 4Stk g′(0) > 1 the quadratic equation has two complex conjugate roots, and the
solution in self-similar form does not exist.

The time a particle escaping from the lateral channel surface takes to reach the plane of symmetry is evalu-
ated from the relation

 ∫ 
0

t

dt = ∫ 
0

1
dy
ψ (y)

 .

Since 1/ψ acts as 1/y near the plane of symmetry, the particle does not reach the line y = 0 over a finite period.
From Eq. (12) it follows that the longitudinal component of the condensed-phase velocity has its maximum

for y = 0:

ϕ0 = 
− 1 + √1 + 4Stk g′ (0)

2Stk
 .

Since we have ϕ0 ≤ g′(0), the maximum velocity of the condensed phase is lower than the corresponding value for the gas.
Parameter-Expansion Method. The motion of a Stokes particle of variable size with allowance for the action

of mass forces is described by the equation

dvp

dt
 = B (vg − vp) + Fr , (14)

where B = 1/(Stk δ2) and δ = rp/rp0. The general solution of (14) is sought in the form of the sum of the general
solution of the corresponding homogeneous equation Y^ p = C1 exp (−F) and the particular solution of the nonhomo-
geneous equation:

vp = v̂p + v~p .

To find the latter we use the parameter–expansion method [10]:

v~p = vg + ∑ 

k=1

∞

(− 1)k Stk
k
 
d

k
vg

dt
k  .

Restricting ourselves to the terms of first order of smallness in the expansion, we write the solution of (14) in the form

vp = C1 exp (− F) + vg + Stk 



Fr − 

dvg

dt



 δ2

 . (15)

Here we have

F = 
1

Stk
 ∫ 
0

t
dτ

δ2
 (τ)

 ;   C1 = vp0 − vg − Stk 



Fr − 





dvg

dt



 0




 .
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Relation (15) shows that the two-phase flow tends to an equilibrium one (vp − vg) for Stk → 0. When Stk ≠ 0 and
rp → 0 we also obtain that vp − vg. In the final step of evolution, particles come into dynamic equilibrium with the gas
phase.

The coordinates of a particle are found by solving the kinematic relation

drp

dt
 = vp . (16)

Integrating (16) from 0 to t, for δ = 1 we obtain

rp = C2 − C1 Stk exp (− t ⁄ Stk) + vgt + Stk (Fr t − vg) . (17)

Since the influence of the exponent decreases with Stk in the second term of the right-hand side of (17), we use the
time of equilibrium phase motion as t. The constants of integration C1 and C2 are determined from the initial condi-
tions. At the instant of time t = 0, the particle is on the channel wall; therefore, we obtain

xp (0) = xp0 ,   yp (0) = 1 ,   up (0) = 0 ,   vp (0) = − ω .

The resulting solution is linear with respect to the Stokes number and satisfactorily describes the trajectories
of the dispersed component in channels of small length. When Stk → ∞ it qualitatively incorrectly reflects the behav-
ior of the particle velocity.

The pattern of motion of a particle of variable size is determined by the parameter H = tp ⁄ tb, equal to the
ratio of the time of residence of the particle in the channel tp to the time of burning of the particle tb. Conditions for
burning of the particle are improved with increase in H. When H = ∞ the particle burns out on the channel wall, and
it does not burn when H = 0. Let us assume that the variation in the particle size is described by the equation [3]

rp = rp0 (1 − t ⁄ tb)
1 ⁄ q ,   t ≤ tb .

Then for q = 2 we find the particle velocity from the relation

vp = C1 (1 − Ft)1
 ⁄ (HStk)

 + vg + (1 − Ft) 



Fr − 

dvg

dt



 Stk .

Velocity of Nonequilibrium Phase Motion. We transform the solution (15) to the form

vg − vp = C1 exp (− F) + Stk 



Fr − 

dvg

dt



 δ2

 . (18)

The first term on the right-hand side of (18) determines the influence of the initial conditions, the second term deter-
mines the influence of mass forces, and the third term determines the influence of the gradient nature of flow. The
criterion of allowability of the parameter expansion of the particle velocity is the condition of smallness of the degree
of velocity nonequilibrium of phases 


vg − vp

 << vg.
Equilibrium conditions correspond to the case C1 = 0. The initial conditions do not influence further particle

motion, and the equilibrium initial velocity is found from the relation

vp0 = vg + 



Fr − 





dvg
dt


 0




 Stk .

The intensity of attenuation of the influence of the initial particle state is determined by the Stokes number, and in the
case of motion of a particle of variable mass it is dependent on the law of variation in its size. The influence of mass
forces on the velocity of nonequilibrium phase motion (in terms of the Froude number) increases with Stokes number,
decreases with δ, and is the most pronounced in low-velocity flow regions. In a gradient-free flow, we have dvg/dt =
0 and the influence of the gasdynamic factor is absent; for dvg/dt ≠ 0 it grows with Stokes number and decreases with
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δ. The derivative dvg/dt is dependent on the geometric shape of the channel and attains the highest value in narrow
channels and at the sites of turn of the flow.

Solution in Finite Form. In channels with strong and weak injections, relations (15) and (17) may be repre-
sented in finite form.

Solution for the Case of Strong Injection. The coordinates of a fluid particle are found from the relations

x = x0 cosh
2
 (t ⁄ 2) ,   y = 

4
π

 arctan 



exp 




− 
π
2

 t






 .

We find the time in equilibrium phase motion:

t = − 
2
π

 ln 



tan 





π
4

 y







 = − 

1
π

 ln 




1 − cos (πy ⁄ 2)
1 + cos (πy ⁄ 2)




 .

Determining the constants of integration from the initial conditions, we obtain, accurate to the O(Stk2) terms, the fol-
lowing relations, yielding the values of the velocity components and the coordinates of the particle at an arbitrary in-
stant of time:

up = ug + 
π2

4
 Stk xp0 exp (− t ⁄ Stk) − 

π2

4
 Stk xp ,

vp = vg + (1 − ω) exp (− t ⁄ Stk) − Stk 




π
4

 sin (πyp)



 ,

xp = x − 
π
2

 Stk x cos 




π
2

 y



 ,

yp = y − ω Stk − (1 − ω) Stk exp (− t ⁄ Stk) + Stk sin 



π
2

 yp



 .

The distributions of the components of the condensed-phase velocity in a channel with a strong injection are given in
Fig. 2 for ω = 0. The influence of the initial nonequilibrium of the flow brings about the deformation of the profile
of the transverse component of the dispersed-phase velocity near the mass-supply surface. However, by and large the
distributions of the transverse component of the condensed-phase velocity differ in a wide range of parameters com-
paratively slightly.

Fig. 2. Distributions of the longitudinal (a) and transverse (b) components of
the condensed-phase velocity for Stk = 0.2 (2), 0.4 (3), 0.6 (4), and 0.8 (5).
Curve 1 corresponds to the carrier flow (Re → ∞).
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Solution for the Case of Weak Injection. The coordinates of a fluid phase here are found from the relations

ln (x ⁄ x0) = − 3t + 
3
2

 ln 

exp (3t) + 

1
2



 ,   y

2
 = 3 ⁄ [2 exp (3t) + 1] ;

the time in equilibrium phase motion is

t = 
1
3

 ln 3 − y
2
 ⁄ y

2
 − ln 2 .

Determining the constants of integration from the initial conditions, we obtain, accurate to the O(Stk2) terms, the fol-
lowing relations, yielding the values of the velocity components and the coordinates of the particle at an arbitrary in-
stant of time:

up = ug + 3Stk xp0 exp (− t ⁄ Stk) − Stk 

9
4

 (1 − yp
2)2 + 

3
2

 xpyp
2
 (3 − yp

2)

 ,

vp = vg + (1 − ω) exp (− t ⁄ Stk) − 
1
4

 Stk yp (9 − 12yp
2
 + 3yp

4) ,

xp = x − 
3
2

 Stk x (1 − y
2) ,

yp = y − ω Stk − (1 − ω) Stk exp (− t ⁄ Stk) + 
1
2

 Stk y (3 − y
2) .

Concentration Distribution. To calculate the concentration distribution of the dispersed component we use
the Eulerian and Lagrangian approaches.

Similar Solution. With account for (9), the continuity equation for the condensed phase will take the follow-
ing form:

χϕ + ψχ ′ + ψ ′χ = 0 . (19)

The boundary condition for Eq. (19) is set on the wall:

χ (1) = ρp,w .

Let us consider the behavior of the solution of Eq. (19) near the plane of symmetry. When 

y − 1


 << 1 this

equation is written in the form

ψ1yχ ′ + (ϕ0 + ψ1) χ + o (y − l) = 0 .

Using the expressions found earlier for ϕ0 and ψ1, we obtain

χ (y) = χ (l) 


y
l




−(1+ϕ0
 ⁄ ψ1)

 .

Since 1 + ϕ0
 ⁄ ψ1 is more than 0, the solution of Eq. (19) near the plane of symmetry is unbounded. This makes it dif-

ficult to use the self-similar representation of the solution of (10) in practice.
To avoid the nonphysical behavior of concentration we set ρp = 0 for x = 0. Then we obtain ρp,w(x, 1) =

ρ
__

p,w(x) 8x 8 [0, ∞]; here, we have ρ
__

p,w = 0 for x = 0 and ρ
__

p,w = ρp,w for x = ∞. One possible variant of selection
of the function ρ

__
p,w is that we set

ρ
__

p,w = 
1

2
 



1 + tanh 





x − x0
A








 ,
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where A D 10. The distribution of the function ρ
__

p,w determining the boundary condition on the wall for the concentra-
tion of the condensed phase is shown in Fig. 3.

In connection with the fact that the solution of (19) is unbounded, the concentration of the dispersed phase is
represented in the complete form (11) and is found by solution of the equation

ρpϕ + xϕ 
∂ρp

∂x
 + ψ 

∂ρp

∂y
 + ψ ′ρp = 0 . (20)

We show that the solution written in the form (10) may be considered as the limiting solution of Eq. (20) for x >>1.
Let us consider the function R(ξ, y) = ρp(x, y), where ξ = 1/x. For x >> 1 we may write

R (ξ, y) = R0 (y) + O (ξ) .

Beyond the small vicinity of the line y = 0 where R is dependent on x, Eq. (20) will take the form

ψR0′ + (ϕ + ψ ′) R0 = 0 . (21)

Equation (21) is identical to Eq. (19). Consequently, if we have ρ
__

p,w → ρp,w for x → ∞, the boundary condition for
R0 has the form R0(1) = ρp,w. As a result, the problem for R0 is identical to the problem of calculation of χ.

The concentration distribution of the condensed phase is given in Fig. 4 (the concentration has a nearly con-
stant value in most of the computational domain (ρp,wvp,w D 0.1)).

Exact Solution. Using the condition of equality of flow rates, we find the concentration distribution of the
dispersed phase over the cross section of the channel:

ρp
o
vwdxp = ρpupdyp .

Passing to dimensionless variables, we obtain

ρp = 
2

up
 
dxp

dyp
 .

When the solutions for channels with strong and weak injections are used, the condensed-phase distributions may be
obtained in finite form (they are not given here because of the cumbersomeness of the corresponding relations).

Fig. 3. Distribution of the function ρ
__

p,w determining the boundary condition for
the concentration of the condensed phase for x0 = 5, ω = 1, ρp,w = 1, Re =
103, and Stk = 10−3.

Fig. 4. Concentration distribution of the condensed phase for x0 = 1, ω = 0.1,
ρp,w = 1, Re = 103, and Stk = 10−1.
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Order of Concentration Singularity. To investigate the singularity of the concentration of the impurity near
the y = 0 line we use the continuity equation written in Lagrangian variables:

np (xp0, yp0, t) 
∂yp (xp0, yp0, t)

∂t
 
∂xp (xp0, yp0, t)

∂xp0
 + 1 = 0 . (22)

In the region of small particles (for 2π Stk < 1), the concentration of the dispersed phase has a singularity
(np(rp) → ∞ for rp → 0). We denote a sphere of radius r with its center at y = 0 by S(r). We compute the number of
particles in this sphere:

N (r) = ∫ 
S

npdr .

Using Eq. (22), we may show, analogously to [11], that

N (r) = Cr
γ
 + o (rχ) .

The exponent γ determines the order of the concentration singularity of the dispersed phase (1 + √2  < γ < 3 for plane
flow). The concentration singularity of particles for rp → 0 is integrable; it becomes weaker with increase in the parti-
cle size [11].

The trajectories of a particle and the concentration distribution of the condensed phase are shown in Fig. 5.
The local maximum corresponds to the position of a separatrix that divides the computational domain into two subdo-
mains: a vacant subdomain and that occupied by the particles.

Conclusions. Based on the parameter-expansion method, we have considered a number of problems associated
with the modeling of two-phase flows in channels with a distributed injection. The distributions of the parameters of
the condensed phase have been obtained accurate to the terms linear with respect to the Stokes number. We have sin-
gled out the factors exerting an influence on the velocity of nonequilibrium phase motion and have investigated the
range of applicability of the solution obtained. The velocity and concentration distributions of the condensed phase in
channels with a strong (nonviscous approximation) and weak (creeping flow) injection have been given in finite form.
The possibility of applying such a solution to calculation of the concentration of the condensed phase has been shown.

The approach proposed and the solutions obtained may be applied to approximate evaluation of the parameters
of gasdispersed flows in channels with injection and allow a comparatively simple generalization to the axisymmetric
case.

Fig. 5. Trajectories of a particle (a) and concentration distribution of the con-
densed phase (b) in a channel with a strong injection (Re → ∞) for Stk = 1.8
and ω = 1.
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NOTATION

B, inertia parameter of a particle; C, constant of integration; f and g, functions describing the dependences of
the longitudinal and transverse components of the gas-phase velocity on the coordinate y; F, integral parameter; Fr,
Froude number; h, channel half-width, m; H, ratio of the characteristic times; l, channel length, m; n, concentration,
1/m3; N, number of particles; p, pressure, Pa; q, exponent in the law of variation in the particle size; r, radius, m; r,
radius vector, m; Re, Reynolds number; S, spherical surface; Stk, Stokes number; t, time, sec; u and v, velocity com-
ponents, m/sec; v, velocity vector, m/sec; x, y, coordinates, m; γ, exponent; δ, ratio of the running particle size to the
initial size; µ, dynamic viscosity, kg/(m⋅sec); ρ, density, kg/m3; ϕ and ψ, functions describing the dependences of the
longitudinal and transverse components of the dispersed-phase velocity on the coordinate y; χ, function describing the
dependence of the concentration of the dispersed phase on the coordinate y; ω, coefficient of initial velocity nonequili-
brium of phases. Subscripts and superscripts: b, burning; g, gas; m, maximum; p, particle; w, channel wall; o, true
density; 0, initial instant of time; ′, derivative with respect to the coordinate y; D, particular solution of a nonhomo-
geneous equation;  ̂ , general solution of a homogeneous equation; 

_
, boundary condition for concentration.
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